Residual periodograms for choosing regularization parameters for ill-posed problems
نویسندگان
چکیده
Bert W. Rust and Dianne P. O’Leary Mathematical and Computational Sciences Division, National Institute of Standards and Technology, Gaithersburg, MD 20899. [email protected] Computer Science Department and Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742; [email protected]. Mathematical and Computational Sciences Division, National Institute of Standards and Technology.
منابع مشابه
Ill-Posed and Linear Inverse Problems
In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.
متن کاملAn Analysis of the Zero-Crossing Method for Choosing Regularization Parameters
Solving discrete ill-posed problems via Tikhonov regularization introduces the problem of determining a regularization parameter. There are several methods available for choosing such a parameter, yet, in general, the uniqueness of this choice is an open question. Two empirical methods for determining a regularization parameter (which appear in the biomedical engineering literature) are the com...
متن کاملRegularization Parameter Selection in Discrete Ill-Posed Problems - The Use of the U-Curve
To obtain smooth solutions to ill-posed problems, the standard Tikhonov regularization method is most often used. For the practical choice of the regularization parameter α we can then employ the well-known L-curve criterion, based on the L-curve which is a plot of the norm of the regularized solution versus the norm of the corresponding residual for all valid regularization parameters. This pa...
متن کاملNear-Optimal Regularization Parameters for Applications in Computer Vision
Computer vision requires the solution of many ill-posed problems such as optical flow, structure from motion, shape from shading, surface reconstruction, image restoration and edge detection. Regularization is a popular method to solve ill-posed problems, in which the solution is sought by minimization of a sum of two weighted terms, one measuring the error arising from the ill-posed model, the...
متن کاملروشهای تجزیه مقادیر منفرد منقطع و تیخونوف تعمیمیافته در پایدارسازی مسئله انتقال به سمت پائین
The methods applied to regularization of the ill-posed problems can be classified under “direct” and “indirect” methods. Practice has shown that the effects of different regularization techniques on an ill-posed problem are not the same, and as such each ill-posed problem requires its own investigation in order to identify its most suitable regularization method. In the geoid computations witho...
متن کامل